15 years practical expierence in airborne laser bathymetry -*Project examples for continued sensor development and survey demands on data processing*

> *Ramona Baran*, Ursula Riegl, Frank Steinbacher & Martin Pfennigbauer

> > Warnemünde, 07.11.2024

What is topobathymetry?

Airborne Hydro Mapping

topographic side bathymetric side A seamless, geometric information on land and water side

What is topobathymetry?

Airborne Hydro Mapping

Time line

2007	2010	2013	2016	2019	2022	2025

Kick-off times ... 2007-2010: Airborne Hydromapping

Main driver: EUropean Water Framework Directive

27 countries \rightarrow 500 million people \rightarrow 1 aim:

Sustainable and ecological utilization of water by developing and implementing of extensive river basin management plans as well as comprehensive risk assessments of different river basin units. Mandatory update every 6 years.

AM

Kick-off times ... 2007-2010: Airborne Hydromapping

Demands from hydraulic engineering

Data required for different kinds of numerical models and their calibration (hydraulic/sediment transport/groundwater ...)

- riverbed changes due to sediment transport
- continuous and close to reality modeling of river structures and riparian areas
- water management and habitat mapping
- documentation of renaturation and technical measures on water bodies
- database for civil authorities
- flood management and planning
- Indication of water quality

AM

Kick-off times ... 2007-2010: Airborne Hydromapping

Demands from hydraulic engineering

Data required for different kinds of numerical models and their calibration (hydraulic/sediment transport/groundwater ...)

- riverbed changes due to sediment transport
- continuous and close to reality modeling of river structures and riparian areas
- water management and habitat mapping
- documentation of renaturation and technical measures on water bodies
- database for civil authorities
- flood management and planning
- Indication of water quality

Factors driving system parameters

- wavelength given by transmittance
- focus on minimum depth capturing for shallow water (25 m in clear water)
- eye safety guarantee during operation
- high resolution for numeric models & water engineering purposes
- high ranging accuracy for water engineering purposes
- turbidity/sediment transport: indication of differing turbidity and sediment transport
- compact system layout for integration in small airborne survey platforms (aircraft/helicopter)
- selection of suitable laser technology
- optimization of opto-mechanical sensor technology
- full-waveform signal recording

🕀 RIEGĽ

Kick-off times ... 2007-2010: Airborne Hydromapping

Austrian FFG-funded research project betweeen academic & economic partners

Airborne Hydromapping \rightarrow Joined development of compact topobathymetric LiDAR system dedicated for airborne surveys

AM

Kick-off times ... 2007-2010: Airborne Hydromapping

 2007
 2010
 2013
 2016
 2019
 2022
 2025

economic partners

Airborne Hydromapping \rightarrow Joined development of compact topobathymetric LiDAR system dedicated for airborne surveys

Austrian FFG-funded research project betweeen academic &

Kick-off times ... 2007-2010: Airborne Hydromapping

Austrian FFG-funded research project betweeen academic & economic partners

Airborne Hydromapping \rightarrow Joined development of compact topobathymetric LiDAR system dedicated for airborne surveys

Foundation of AHM GmbH as academic spin-off of Innsbruck University Tecnam P2006T

Launch of topobathymetric LiDAR sensor production with VQ820-G

Forschungsprojekte 🗸 Start Die IGKB 🗸 Bodensee 🗸 Publikationen 🗸 Daten und Karten 🐱

Proofing by practice – 2012-2016:

Milliarden Messwerte erzeugt.

Das resultierende Tiefenmodell des Sees bietet, im Vergleich mit früheren Aufnahmen, eine um Größenordnungen verbesserte Qualität. Die Daten ermöglichen einen detaillierten Blick auf die Morphologie des Seebodens und dokumentieren sehr kleinräumige ebenso wie großflächige natürliche Strukturen und archäologisch relevante Objekte am Seegrund.

RIEGL

Lake Constance: IGKB - Tiefenschärfe

- Shoreline length 273 km
- Waterdepth down to 10 m _

| 12

AM

Research to practice – 2012-2016:

| 13

Research to practice – 2012-2016:

Workshop Programm

Research to practice – 2012-2016:

Research to practice – 2012-2016:

IEGL

Topobathymetry 2.0 in practice

Altitude Wavelength Beam divergence Pulse repetition rate Scan angle Scan pattern

VQ820-G 600 m (eye safety) 532 nm fix (1 mrad) 256 kHz 20° backward

Secchi depth Online waveform Full waveform

VQ880-G 600 m (eye safety) 532 nm variable (0.7-1.1 mrad) up to 550 kHz 20° forward & backward

Topobathymetry 2.0 in practice

Altitude Wavelength Beam divergence Pulse repetition rate Scan angle Scan pattern

VQ820-G 600 m (eye safety) 532 nm fix (1 mrad) 256 kHz 20° backward

Secchi depth Online waveform Full waveform

VQ880-G 600 m (eye safety) 532 nm variable (0.7-1.1 mrad) up to 550 kHz 20° forward & backward

| 20

HydroVISH

Data visualisation, -processing & -modelling (filtering, strip adjustment, classification, refraction, FWF analysis, DTM, profiles, contour lines, hydraulic meshes ...)

Data merging (LiDAR, MBES, RGB, hydraulics, LoD ...)

3D-geodata Viewer KomVISH as interface to 2D-GIS (ArcGIS Pro & Kominfo)

Handling 3D-geomass data (e.g. LiDAR & DSM-data Bavaria)

HydroVISH

Flexible real-time visualisation of full waveform & point data for evaluation of data quality related penetration depth and aerial waterground coverage

\rightarrow Support of FWF analysis

HydroVISH

Pre-classification of waterbody based on FWF by e-function fitting

\rightarrow Support of point classification

RIEGL

| 23

HydroVISH

Flexible FWF analysis related

Signal decomposition:

Implemented: Gaussian decomposition

Flexible FWF analysis related

Signal decomposition:

linear

HydroVISH

Flexible FWF analysis related

Deconvolution

Using known system wave

Implemented: Richardson-Lucy

HydroVISH

Flexible FWF analysis related

Deconvolution

Using known system wave

Implemented: Richardson-Lucy

Elbe – August 2018

600 km river survey at extreme low water stage

Secchi depth 1.2-1.5 m \rightarrow penetration depth down to 2.5 m

100

Cuxhaven

Brunsbüttel

NORD-SEE

Elbe – August 2018

Scientifically supported FWF analysis and evaluation of results for three ca. 5 km long river section:

> Classified waterground point density Aerial waterground coverage

RIEGL

Elbe – August 2018

Best statistics for Richardson Lucy deconvolution & hybrid approach

Results very similar, as for hybrid approach at low amplitudes of waterbody Richardson Lucy deconvolution is applied

High amplitudes: Gaussian decomposition with one iteration \rightarrow Suppression of implausible FWF points from implausible FWF peak detection

		Mean	Median	Total number water
Perimeter	Method	(points/m ²)	(points/m ²)	ground points
TS1 Hamburg	FWF - linearGauss	33.383	24	5'384'882
	FWF - GaussZerlegung	35.077	25	5'421'125
	FWF - RL-Entfaltung	38.087	28	6'902'709
	FWF - Hybrid	37.332	28	6'475'765
	OWP	35.085	26	5'088'627
TS2 Magdeburg	FWF - linearGauss	38.951	30	10'736'365
	FWF - GaussZerlegung	35.812	25	9'660'734
	FWF - RL-Entfaltung	43.384	34	12'886'671
	FWF - Hybrid	42.695	33	12'301'374
	OWP	40.102	31	8'931'249
TS3 Elster	FWF - linearGauss	54.454	51	25'214'902
	FWF - GaussZerlegung	51.382	47	23'595'085
	FWF - RL-Entfaltung	61.002	56	28'646'848
	FWF - Hybrid	60.853	56	28'329'504
	FWF - Stapelung	69.450	65	32'133'627
	OWP	46.936	40	12'642'703

Perimeter	Method	Number of 2x2 m-raster cells	Water ground area (m²)	Gain in FWF- to OWP-water ground (%)
TS1 Hamburg	FWF - linearGauss	49'727	198'908	+10.66
	FWF - GaussZerlegung	48'337	193'348	+7.57
	FWF - RL-Entfaltung	53'616	214'464	+19.32
	FWF - Hybrid	51'673	206'692	+14.99
	OWP	44'935	179'740	
TS2 Magdeburg	FWF - linearGauss	82'061	328'244	+18.63
	FWF - GaussZerlegung	81'077	324'308	+17.21
	FWF - RL-Entfaltung	86'226	344'904	+24.65
	FWF - Hybrid	83'893	335'572	+21.28
	OWP	69'175	276'700	
TS3 Elster	FWF - linearGauss	122'442	489'768	+53.19
	FWF - GaussZerlegung	121'933	487'732	+52.55
	FWF - RL-Entfaltung	123'950	495'800	+55.08
	FWF - Hybrid	122'911	491'644	+53.78
	FWF - Stapelung	122'394	489'576	+53.13
	OWP	79'928	319'712	

IEGL

Hardware / Software Development

Thank you for your attention!

Any questions?

