

Taking into account more simply the environmental impact of hydrographic echosounders

Xavier Lurton

Consultant – xavier.lurton@orange.fr

Context (1) : MFA Naval Sonar is incriminated

- A global concern for 30+ years:
 - Impact of anthropogenic acoustic noise upon marine life
 - Mainly marine mammals
- First events in the **1990s cetacean strandings linked to naval sonar drills**
- Confirmed events
 - Bahamas, Greece, Canary...
 - Several tens of other probable events
- Usual configuration
 - Odontocetes (Beaked Whales...)
 - MFA sonars (2-4 kHz; long chirp signals)
- Consequences
 - Specific mitigation measures
 - Extended (without evidence) to seismic sources
 - Preliminary impact studies, authorization process...

Context (2) : LF Multibeam is put on the spot

- Madagascar, 2008: massive stranding (>100) of Melon-head Dolphins trapped in an estuary
- 2013: Expertise conclusion « most plausible and likely » cause = signals from a 12-kHz multibeam echosounder

Southall et al, 2013. Final report of the Independent Scientific Review Panel investigating potential contributing factors to a 2008 mass stranding of melon-headed whales (Peponocephala electra) in Antsohihy, Madagascar.

- Strong adverse reactions of the public opinion & press
- Practical consequences:

Harmfulness suspicion -> LF MBES – and all echosounders

Regulations & authorization process for echosounders

Risks for marine life caused by noise sources

Scale of severity

- 1. Audibility
 - Detection above noise
- 2. Behavioral reaction
 - Disturbance
- 3. Temporary injury
 - Auditory recoverable
- 4. Permanent injury
 - Auditory definitive
- 5. Physical trauma
 - Possibly lethal

Level of Scientific Knowledge

- 1. Marine Mammals
 - Southall et al. 2019
- 2. Fishes
 - Popper et al. 2019
- 3. Invertebrates
 - Solé et al. 2023

How to objectively quantify risks to marine life ?

Analysis of the **Received Sound Level** (e.g. caused by a sonar)

- ➔ Comparison w/ admissible risk thresholds
- → Conclusion = acceptability, mitigation...

Expressed by two fundamental metrics :

- Sound Pressure Level (SPL) = instantaneous intensity
- Sound Exposure Level (SEL) = cumulative energy / exposure
- Risk thresholds depend upon:
 - **Species** : anatomy, auditory response, frequency specialization/sensitivity
 - Signal frequency & type : impulsive / continuous, wide/narrow band...
 - Risk type to consider & severity level

Risks for Marine Mammals

- Several hearing groups:
 - Low Frequency (Mysticetes)
 - High Frequency (most Odontocetes)
 - Very High Frequency (some Odontocetes)
 - (Sirenians, seals, bears...)
- M-weighting functions / per group
- Various risks thresholds
 - Behavioral (measured at sea)
 - TTS (Temporary impairment, measured in lab)
 - PTS (Permanent injury, extrapolated)

See e.g. Southall & al. (2007) Aquatic Mammals 33(4): 411:522

Risk Thresholds for Marine Mammals

• Non-Impulsive : SPL = **120** dB / 1μ Pa

Magnitudes / Echosounders PTS \rightarrow SEL \approx 200 dB /1µPa².s TTS \rightarrow SEL \approx 180 dB /1µPa².s

EchoSounder radiation - Sporadic effects

In **Space** (angle) :

- Narrow main beam → low probability of interception
- Wide sidelobes → continuous insonification lower level

In Frequency :

- « High » frequencies (10s to 100s of kHz)
- Narrow-band signals (10 > Q > 100)

Low actual impact (despite high Source levels)

- Naturally : < -13 to -18 dB
- With Beamformer : -20 to -30 dB

In **Time** :

- Short signals
- Slow ping rate
- → Low duty factor (<1/100)

Typical risk assesment preliminary study

MBES insonification : main lobe & sidelobes

In a survey line configuration:

- Main-lobe insonification happens (here) about once during a survey line
- Probability decreases at short ranges and for slow ping rates
- Sidelobe insonification is always possible at short ranges / low levels

SEL Modelling hypotheses :

- One (or few) direct ping in the main lobe
- Continuous radiation received from sidelobes

Computation Principle (simplified but sufficient)

- **SL** = Sonar Source Level, in dB re 1µPa@1m
- **DF** = Sonar Directivity Function Simplified → 0 dB in mainlobe, -30 dB in sidelobes
- **10log***T* = Energy integration over exposure time *T* (cumulated / 24 h → 100-1000s)
- $TL = 20\log R + \alpha R = Transmission Loss at range R & signal frequency (absorption <math>\alpha$)
- *RT* = Risk Threshold / reception, for a MM species & a given risk level (TTS, PPS...)
- MW = M-weighting term, depending on MM species M_m , and signal frequency fNote: A (very) conservative estimate, since the MM is assumed at fixed range from the sonar for 24 h... More realistic algorithms are possible !

Case #1: Main Lobe Insonification : PTS upon SEL

- Highest source level
 - Nominal levels > actual (physical) levels because of nearfield effect
- Very narrow beamwidth → Low number of pings received (conventional =1)
- Short signals → low SEL per ping
- SEL @1m = SL + 10logT
- RT = 200 dB (PTS magnitude)

R _{RT}	<i>SEL</i> @1m	<i>T</i> (ms)	SL	<i>f</i> (kHz)	MBES			
< 30 m	< 230	100	240	12	LF			
< 3 m	< 210	10	230	38	MF			
< 1 m	< 190	1	220	100	HF			
\ /								

→ Negligible risk

Conservative : Near-field decrease neglected / M-weighting = off

Case #2 : Sidelobe Insonification : PTS upon SEL

- Typically -20 to -30 dB below main lobe level
- Wide angle radiation → High number of pings received
- Numerous subsequent short signals \rightarrow T = Duty cycle x 24h
- SEL @1m = SL + 10logT
- RT = 200 dB (PTS magnitude)

R _{RT}	<i>SEL</i> @1m	Duty C.	SL	<i>f</i> (kHz)	MBES
< 100 m	< 240	1/100	210	12	LF
< 30 m	< 230	1/100	200	38	MF
< 10 m	< 220	1/100	190	100	HF

→ Acceptable risk

Conservative : Constant range/24 h – High Duty cycle - M-weighting = off

Case #3 : Sidelobe Insonification : Behavioral reaction

- Typically -20 to -30 dB below main lobe level
- Wide angle radiation → High probability of insonification
- RT = 120 dB (NMFS value, continuous noise)

→ Moderate risk

Conservative : continuous noise hypothesis

120 dB = disputable conventional threshold (no species/frequency dependence...)

Practical Results of Risk Analyses

• VHF MBES (200+ kHz) are not really to be considered

- Out of the MMs' frequency range
- > (Relatively) low source levels, very short pulses (but high pulse rate)
- Very high absorption rates
- HF MBES (70-150 kHz) cause negligible risks
 - Upper part of the MMs' freq range
 - > Modest source level, short pulses
 - High absorption rate
- LF & MF MBES (12 50 kHz) raise moderate risks
 - > High source level, in the hi-sensitivity range of all MMs classes
 - Short pulses, very low pulse rate

CONSISTENT RESULTS WHATEVER THE EIA STUDY

Towards a simplification ?

- Every new EIA implies a new study of MBES risks
 - always the same MM classes
 - > a limited panoply of echosounders especially for hydrography
 - > always the same conclusions (if properly conducted)
- Such works could be conducted once and for all
 - For a representative pannel of sonar systems
 - Using the currently admitted models and risk thresholds
 - ➤ Under the control of major regulator(s) → endorsing the results
 - Cooperation with constructors
 - Results to be widely disseminated and explained
 - > To be reconsidered following future scientific advances

Possible systematic exoneration of echosounders classes or models ?

Wrapping it all up

- Echosounders have been widely used over ~ one century
- Sonar-caused accidents did happen for specific naval sonars, animals and configurations
- Echosounders transmit short narrow-band signals at medium to high frequencies, inside narrow Tx sectors
- Exposition in main lobe at high level is only sporadic ; sidelobe insonification always happens but at lower levels
- Chances to exceed risk thresholds are marginal whatever the criteria
- Behavioral reactions are possible as to many human activities but largely unpredictable

To Conclude

- Echosounding = more and more regulated more or less relevantly
- Echosounding does NOT threaten whales! (but chemical pollution does and fishing gear, plastic waste, naval sonar, ship traffic...!!!)
- Authorization processes are heavy, redundant and most often pointless for hydrographic echosounders
- A waste of time/ efforts/ money for both applying operators & regulating authorities
- The **specific case of echosounders** should be reconsidered in this respect
 - Exonerate them from preliminary EIA ?
 - Joint effort : regulators & constructors ?
 - To be suggested / supported by IHO ?

