

Seafloor Backscatter Measurements by Hydrographic Multibeam Echosounders

Toward Incorporation of Backscatter Measurements in Hydrography Protocols & Standards ?

Xavier Lurton

Consultant in Underwater Acoustics

xavier.lurton@orange.fr

Hydrography's Two Major Issues:

"How deep ?"

> Bathymetry

Map © SHOM

Nautical charts...

harts... Fisheries

Defense

AND

Exploitation of underwater mineral resources

"What's below ?"

Expectations on seabed nature & characteristics

Coastal & offshore engineering

200

> Navigation, anchoring, localization

- ➢Oceanography : geosciences, biology...
- Habitat mapping, environment monitoring...

Seabed identification approaches

- Historical: direct sampling & observation
 - Greased lead line
 - Sediment grab
 - Camera
 - Still (forever?) the Ground Truth!
- Today: remote sensing
 - Airborne Lidar, satellite optical images...

• ECHOSOUNDING !

- Image © Kongsberg Discovery
- THE TOOL for bathymetry and seafloor mapping for more than one century
- A decisive evolution : the multibeam echosounder (MBES)
- An accurate & practical sensor prevalent today (and still for long)

A key potential beyond bathymetry : Seafloor reflectivity measurement

Echosounding: from one same echo...

Time, Phase
+ Geometry
→ Echo Delay T → Range & Angle
> Target localisation
> Bathymetry, mapping...

Amplitude + Geometry Echo Intensity I → Target Strength
 > Target nature / structure
 > Seafloor characterization...

One sensor **>** Two information levels

- > Seabed reflectivity = an intrinsic **by-product of echosounding**
- Echosounding answers to both "How deep?" and "What's below?"

QVOD ERAT DEMONSTRANDVM ...

Not so simple !!!

- Echo time delay is extremely robust echo amplitude is not
- Relations between reflectivity and seafloor properties are very complex
- Reflectivity = far more challenging than bathymetry to record, process & interpret

How can Backscatter be objectively quantified?

Fundamental concepts in sonar: the *Target Strength (TS)*...

- Expressed simply: the relative intensity level sent back by a target
- The larger/harder the target, the higher the TS
- For an extended interface (seafloor...), the actual target extent is the sonar's beam/signal « **footprint** »

... & the Backscattering Strength (BS)

- \succ = **TS** expressed for **a unit area** (1 m²)
- to be corrected by sonar footprint
- characteristic of seafloor properties
- ▷ BS = TS 10 logA

Examples of measured angular BS vs Ground Truth

- Continental Shelf, Bay of Biscay
- Simrad ME70 MBES
- Around 70 kHz
- Data fit with a heuristic law
 → smoothing
- 10 dB dynamics between these sediments

What could Backscatter Strength *ideally* provide?

- 1. A proxy for local seabed types
 - A few seabed « classes » : R, G, S, M...
 - An exhaustive calibrated « sonar image »
- 2. Seabed acoustical properties
 - Impedance contrast $\,Z_{\!_{S}}^{}/\,Z_{\!_{W}}^{}$
 - Surface roughness, sediment volume
 - (Local scatterers, layering...)
- 3. Geological properties
 - Density, velocity, shear...
 - Porosity, grain-size distribution

An analogy w/ Space: Satellite-borne Radar

- Example: ESA's Sentinel-1 CSAR
 - C-band imaging & hi-res topography
 - Launched in 2014
 - 2 satellites → complete Earth coverage in 6 days !
- Mission: Radiometry (=BS measurement) of the Earth's surface
 - 25° to 45° incidence Resolution = 10 m
 - Independent of day/night, clouds...
- Numerous applications
 - Land mapping & monitoring
 - Agriculture, vegetation...
 - Sea-state; ice mapping...

Extremely similar to MBES mapping of seafloor

The Earth's BS from satellite radar: overview...

Radar or Sonar : expected sensor's capabilities

- Quantitative estimates of (1) transmitted signals (2) recorded echo waveforms
- An appropriate (= exhaustive) **coverage** and **sampling** of the seabed
- A practical analysis of incidence angle dependence
- ... & ideally : add frequency dependence/ azimuth variation/ sediment penetration...

Today's Hydrography Sonars Can Do It All !!!

Image © NIWA

Backscatter calibration = not an option!

Data from UNB & CHS – Various MBES & cruises

MBES Backscatter Calibration Methods

Metrological

In factory, or test tank Electroacoustical data:

- → Source Level / Signal / Receiver sensitivity / Gains / Directivity...
- Practical for Hi-frequency systems
- → Implies facilities, equipment & availability Lanzoni & Weber, JASA 2012

MBES Backscatter Calibration Methods

MBES Calibration / Seafloor Reference Areas

- The most practical method today
- Inspired (again!) by satellite-borne radar (South Am. rainforest)
- A number of **strong conditions** to fulfill :
 - Low-relief topography / Significant extent / Accessibility
 - High reflectivity level / Low angle dependence
 - Space homogeneity & Time stability
- Compatibility with hydrography methods

An example of BS mapping at regional scale

Data from a systematical effort of seabed mapping over several years One same MBES : Simrad ME 70 (calibrated – Fisheries specialized)

- 169 « Boxes »
- 213 surveys
- Inter-box lines
- Ground-truthing

Processing of angular backscatter measurements

→ Classification of all angular BS curves (shape, level...)

Final « Acoustical facies » mapping at region scale

- After classification / **12 BS(** θ **) classes**
- Interpolation between the 169 boxes, using the connecting lines
- A map of the « acoustical facies » classes (at 70 kHz)

Backscatter Data Recording → Large data volumes

- Magnitude 1 TB/day 100x to 1000x more than just bathymetry
- Optional

 often (not always!) not recorded

Why this is a shame :

- > The cost of storage media (HD...) has decreased very low
- A systematic recording of backscatter is desirable in the context of a policy of global seafloor mapping (Oceans 2030)

Potential tools for processing huge data amounts now available

A.I. = The Future for BS data processing

- Automated processing of large data volumes
- New capabilities for specific operations
 - Quality Control & Filtering
 - Seabed classification w/ machine learning
- Already used today in hydrographic mapping

Typical daily cost of survey vessels 10 - 40 k€

Backscatter / Bathymetry compatibility?

1. Sensors

- Same echosounders
- 2. Survey strategies

- Coverage & sampling scale: possibly different- can be made consistent
- 3. Data processing tools
 - Complementary methods
 - BS processing = incorporated today in most MBES processing SW suites

4. Calibration

- Common operational protocols ? Reference seafloor areas ?
- 5. Data quality standards
 - Still to be defined for BS

Towards BS incorporation in hydrography standards

A first step: latest version of S-44 (ed. 6.2.0 - 2024)

Chapter 3 - DEPTH, BATHYMETRIC COVERAGE, FEATURES, AND NATURE OF THE BOTTOM

(...)

3.8. Nature of the bottom

3.8.1. Acoustic Backscatter

3.8.2. Optical Backscatter

The Backscatter Working Group (BSWG)

- A framework for methodology definition and recommendations already exists : **BSWG** !!!
 - Started in 2013 In the **GeoHab** context (habitat mapping community)
 - Gathers scientists, engineers, industrialists, operators...
 - Suggests guidelines, research topics, cooperations...
 - Guideline document in 2015 (available on line)
 - MGR "Backscatter Special Issue" in 2017
- BSWG II was launched Fall 2022

First contacts BSWG- IHO / Late 2023 (→ IHO S-44 ed. 6.2.0 2024)

GEOHAB

Marine Geological and Biological

Habitat Mapping

Marine Geophy

GEOHAB

A few takeaway messages

- Sonar backscatter is a key component of today's seafloor mapping
- Hydrographic bathymetry & backscatter share:
 - complementary needs for exploration, mapping & monitoring
 - common tools echosounders, SW packages
 - > compatible **methodologies** *calibration, survey strategies*
 - ... and **miss**:
 - > a common **framework of standards** and protocols
- A first attempt = undertaken in latest IHO S-44 To be continued !!!
- Two possible (& realistic) short-term common objectives :
 - A Quality Scale for Backscatter ?
 - **Reference seafloor areas** for calibration ?

HYDRO 2024 Hydrographic Conference

