Schleswig-Holstein. Der echte Norden.

Coastal protection

New techniques in capturing and modelling of morphological data

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 – 10 November 2016

Contents

LKN.SH 🗮

- Coastal protection
- Previous kind of survey
- LIDAR bathymetry
 - Principle and limitations
 - Expected depths
 - Results
- Modelling of linebased survey data
 - Coons patches for higher data density
 - Transfer to line based survey of channels
 - Results
- Conclusions

Introduction

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 - 10 November 2016

Features of coastal protection

LKN.SH 🛪 🏽

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

Length of coastlines:

Baltic Sea ca. 640 km North Sea ca. 560 km

Threat of storm surge and floods:

12% of the inhabitants 25% of the area

<u>Areawide morphological</u> <u>data is a main base for</u> <u>coastal protection!</u>

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 – 10 November 2016

Features of the coastal areas

LKN.SH 🗱 🏽

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

Baltic Sea: Fjords and shallow shore areas, nearly constant waterlevel (MSL)

North Sea: Wadden Sea, formed by two tides daily, variation of three meters of the waterlevel

=> Conditions of areawide survey

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 – 10 November 2016

Previous kind of survey of the North Sea LKN.SH 🗮

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

Primarily hydrographic survey at high tide Secondarily Airborne lidarscanning and terrestrial survey at low tide as addition

Previous kind of survey of the Baltic Sea LKN.SH 🗮

LIDAR bathymetry, principle and limitations

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 - 10 November 2016

Secchi depths

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 - 10 November 2016

Expected depths

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

**. *				See 1	1 (A)
<mark>3 m</mark>			3 m		
-		Systems	Producer	Factor	
	1-1.5 m	"1-Secchi-Systems"			
North Sea	A P	VQ-880-G	Riegl	1,5 x	
	The second	Chiroptera II	Leica AHAB	1,5 x	
		Titan	Teledyne Optech	1 x	1
		"3-Secchi-Systems"			
	X	CZMIL	Teledyne Optech	2,5 x	5 m
	0-0.5 m	Hawkeye III	Leica AHAB	3 x	1
	I and	LADS II	Fugro	2,5 – 3 x	

Expected depths of penetration = Secchi-value x factor

LKN.SH 🐲 ¥ Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

Westcoast of the island Sylt:

the whole bar-trough-system down to eight meters is captured

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

 ⇒ 1 Secchi-System Wadden Sea: the ground of all water areas on the Riegl VQ 820 tideland are captured, only the tideways are left

LKN.SH 🗮

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 – 10 November 2016

LKN.SH

Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein

Hight accuracy approx. 10-20cm

(comparison to previous survey procedures)

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 - 10 November 2016

LKN.SH 💥 🏼

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 - 10 November 2016

HYDRO 2016, Lutz Christiansen, Rostock-Warnemünde, 08 - 10 November 2016

Data modelling

Coons patches

- Especially the car industry needs algorithm to generate free formed surfaces by CAD, e.g. for car bodies
- Approximation algorithms of Bézier curves and Bézier surfaces are known. These were developed by P. Bézier at Renault.
- Steven Anson Coons (1912 1979) was a pioneer of developments in computer graphics. He worked among others at Ford.
- His developed **Coons patches** are based on an **interpolation algorithm**.

Coons patches

Schleswig-Holstein

Base: Higher data density Four squared area, by bilinear interpolation inside regular or irregular, the four squared area formed Transfer to hydrographic survey: cross profiles vertical to the flow direction together with the hull produced four squared areas.

This strukture allowes bilinear interpolation!

Conclusions

Technique of LIDAR bathymetry is effectivly usable in the near shore and shallow water coastal area of the North Sea and the Baltic Sea

Conclusions

Goal: Morphological model of survey data for coastal protection

Data of LIDAR bathymetry and additional single beam data completed by data of Coons patches gives a new quality of the morphological model of the coastal areas of the North Sea and the Baltic Sea needed for the task of coastal protection!

Thank you for the attention!

