

Quantifying Turbulence in Tidal Channels

Presenter: Dr. Fabian Wolk, Rockland Scientific Inc.

HYDRO 2016, Rostock-Warnemünde, November 9, 2016 Session 4A – In situ and remote hydrography

Focus Turbulence measurements and instrumentation

Location

• Victoria, B.C. Canada

<u>Team</u>

- 17 full-time staff / + students
- Oceanographers
- Mechanical / Electronics Engineers
- Software Developers
- Technologists
- Administration

Cumulative Experience

- 50 years in oceanographic turbulence research
- 22 years in oceanographic instrumentation
- > 50 publications on turbulence measurements

Key Markets

- Scientific research
- Security
- Hydrography

Why is turbulence important?

 Tidal Channels are the most turbulent places on the planet

http://www.windturbinesyndrome.com/wp-content/uploads/2011/11/cloud-528.jpg

Turbulence in Tidal Channels

- Rate of energy dissipation
 is up to 10⁶ x stronger
 than in the ocean interior
- Density of water is 10³ x
 higher than air

- Turbulence occurs over a wide range of <u>time</u> and <u>length</u> scales
- Affects different parts of the structure

Turbulence Impacts

- Device Performance
 → Energy Extraction
- Device Loading and Fatigue
 → Time to Failure
- Investment and Insurance Risk

Industry wants:

Lunar-Cycle Time-Series for Statistical Confidence.

 Spatial Variations over scales from Rotor Diameter to Blade Chord Length.

Spatial Variations around a Site.

What is turbulence?

$$I = \frac{u'}{\bar{u}}$$
 Turbulence intensity %

Dissipation rate ε

- *ε* is the most important parameter characterizing turbulence.
- ε is required for turbulence modelling of channel flow
- ε is required for turbulence modelling of rotor stress.

Sources of Turbulence

Seabed roughness adds coherent structural content to an already turbulent inflow

Channel shape creates vertical turbulent eddy structures Cross-channel section of the rate of dissipation of kinetic energy, ϵ , in Islay Sound during an ebb tide.

Figure from Lueck et al. (2016).

How to measure turbulence

ADCP

- Remote detection of fluctuating velocities
- Easy deployment and installation
- Only delivers time- and space-averaged quantities because of beam spread
- Not suitable for tank installation

ADV

- Point measurements of mean and fluctuating velocities
- High temporal and spatial resolution
- Response depends on acoustic scatterers

Shear probe

- Point measurements of fluctuating velocities
- High temporal and spatial resolution
- Cannot detect mean flow

Full-scale resolution of turbulence

Turbulence Characterization & Modeling

Objectives

- Developing sensor system for turbulence that can be used <u>in</u> the laboratory and in the field
- Using this technology to <u>understand the translation</u> <u>between laboratory and real</u> <u>world</u>

Funding

- Nova Scotia Department of Energy (OERA)
- Canadian Government (IRAP)
- UK Government (Innovate UK)
- Project partners (Rockland, Black Rock, EMEC, Ocean Array Systems)

Consortium of six partners in Canada & UK

Technology test sites

NEWFOUNDLAND AND LABRADOR

QUÉBEC

Minas Passage (FORCE)

Black Rock / Schottel test berth

European Marine Energy Centre (EMEC)

- Orkney Islands, Scotland
- Fall of Warnness

FloWave Ocean Simulator

- Circular flume
- 25 m diameter / 5 m depth
- 28 flow drive units
- 168 wave paddles

1) FloWave TT

Test setup May 2016

2) EMEC Installation

- Seabed platform connected to shore station
- Shear probes and EM current meter
- Long-term deployment with periodic data downloads
- Provides high resolution time series of turbulence parameters near turbine site
- Planned deployment October 2016

3) Minas Passage

- "Nemo" float
 - Shear probes
 - ADV
 - 600kHz ADCP
- 2 Nemo deployed upstream / downstream of Schottel turbine berth site
- 14-day deployment in September 2016

Nemo in Grand Passage

Summary

- Objectives: measure <u>turbulence over a wide</u> <u>range of temporal and spatial scales</u> to capture time-averaged turbulence quantities as well as turbulent intermittency
- 2. Measurement system <u>combining remote</u> (acoustic) sensors and point sensors capture turbulent flow over all relevant length and time scales
- 3. Shear probes can be used in <u>vertical profiling</u> resolving spatial variations for site selection